skip to main content


Search for: All records

Creators/Authors contains: "Lee, S. J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Many of the studies on the entropy‐stabilized oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O have been heavily application‐based. Previous works have studied effects of cation stoichiometry on the entropy‐driven reaction to form a single phase, but a fundamental exploration of the effects of anion stoichiometry and/or redox chemistry on electrical properties is lacking. Using near‐edge X‐ray absorption fine structure (NEXAFS) and electrical measurements, we show that oxidizing thin film samples of (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O affects primarily the valence of Co, leaving the other cations in this high‐entropy system unchanged. This oxidation increases electrical conduction in these thin films, which occurs via small polaron hopping mediated by the Co valence shift from 2+ to a mixed 2+/3+ state. In parallel, we show that bulk samples sintered in an oxygen‐rich atmosphere have a lower activation energy for electrical conduction than those equilibrated in a nitrogen (reducing) atmosphere. Combining feasible defect compensation scenarios with electrical impedance measurements and NEXAFS data, we propose a self‐consistent interpretation of Co redox‐mediated small polaron conduction as the dominant method of charge transfer in this system.

     
    more » « less
  2. null (Ed.)
  3. Many low-threshold experiments observe sharply rising event rates of yet unknown origins below a few hundred eV, and larger than expected from known backgrounds. Due to the significant impact of this excess on the dark matter or neutrino sensitivity of these experiments, a collective effort has been started to share the knowledge about the individual observations. For this, the EXCESS Workshop was initiated. In its first iteration in June 2021, ten rare event search collaborations contributed to this initiative via talks and discussions. The contributing collaborations were CONNIE, CRESST, DAMIC, EDELWEISS, MINER, NEWS-G, NUCLEUS, RICOCHET, SENSEI and SuperCDMS. They presented data about their observed energy spectra and known backgrounds together with details about the respective measurements. In this paper, we summarize the presented information and give a comprehensive overview of the similarities and differences between the distinct measurements. The provided data is furthermore publicly available on the workshop's data repository together with a plotting tool for visualization. 
    more » « less
  4. Abstract The production cross-section of a top quark in association with a W boson is measured using proton–proton collisions at $$\sqrt{s} = 8\,\text {TeV}$$ s = 8 TeV . The dataset corresponds to an integrated luminosity of $$20.2\,\text {fb}^{-1}$$ 20.2 fb - 1 , and was collected in 2012 by the ATLAS detector at the Large Hadron Collider at CERN. The analysis is performed in the single-lepton channel. Events are selected by requiring one isolated lepton (electron or muon) and at least three jets. A neural network is trained to separate the tW signal from the dominant $$t{\bar{t}}$$ t t ¯ background. The cross-section is extracted from a binned profile maximum-likelihood fit to a two-dimensional discriminant built from the neural-network output and the invariant mass of the hadronically decaying W boson. The measured cross-section is $$\sigma _{tW} = 26 \pm 7\,\text {pb}$$ σ tW = 26 ± 7 pb , in good agreement with the Standard Model expectation. 
    more » « less
  5. null (Ed.)
    Abstract A measurement of the $$ B_{s}^{0} \rightarrow J/\psi \phi $$ B s 0 → J / ψ ϕ decay parameters using $$ 80.5\, \mathrm {fb^{-1}} $$ 80.5 fb - 1 of integrated luminosity collected with the ATLAS detector from 13  $$\text {Te}\text {V}$$ Te proton–proton collisions at the LHC is presented. The measured parameters include the CP -violating phase $$\phi _{s} $$ ϕ s , the width difference $$ \Delta \Gamma _{s}$$ Δ Γ s between the $$B_{s}^{0}$$ B s 0 meson mass eigenstates and the average decay width $$ \Gamma _{s}$$ Γ s . The values measured for the physical parameters are combined with those from $$ 19.2\, \mathrm {fb^{-1}} $$ 19.2 fb - 1 of 7 and 8  $$\text {Te}\text {V}$$ Te data, leading to the following: $$\begin{aligned} \phi _{s}= & {} -0.087 \pm 0.036 ~\mathrm {(stat.)} \pm 0.021 ~\mathrm {(syst.)~rad} \\ \Delta \Gamma _{s}= & {} 0.0657 \pm 0.0043 ~\mathrm {(stat.)}\pm 0.0037 ~\mathrm {(syst.)~ps}^{-1} \\ \Gamma _{s}= & {} 0.6703 \pm 0.0014 ~\mathrm {(stat.)}\pm 0.0018 ~\mathrm {(syst.)~ps}^{-1} \end{aligned}$$ ϕ s = - 0.087 ± 0.036 ( stat . ) ± 0.021 ( syst . ) rad Δ Γ s = 0.0657 ± 0.0043 ( stat . ) ± 0.0037 ( syst . ) ps - 1 Γ s = 0.6703 ± 0.0014 ( stat . ) ± 0.0018 ( syst . ) ps - 1 Results for $$\phi _{s} $$ ϕ s and $$ \Delta \Gamma _{s}$$ Δ Γ s are also presented as 68% confidence level contours in the $$\phi _{s} $$ ϕ s – $$ \Delta \Gamma _{s}$$ Δ Γ s plane. Furthermore the transversity amplitudes and corresponding strong phases are measured. $$\phi _{s} $$ ϕ s and $$ \Delta \Gamma _{s}$$ Δ Γ s measurements are in agreement with the Standard Model predictions. 
    more » « less